No Laplacian Perfect State Transfer in Trees

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

No Starlike Trees Are Laplacian Cospectral

Let G be a graph with n vertices and m edges. The degree sequence of G is denoted by d1 ≥ d2 ≥ · · · ≥ dn. Let A(G) and D(G) = diag(di : 1 ≤ i ≤ n) be the adjacency matrix and the degree diagonal matrix of G, respectively. The Laplacian matrix of G is L(G) = D(G) − A(G). It is well known that L(G) is a symmetric, semidefinite matrix. We assume the spectrum of L(G), or the Laplacian spectrum of ...

متن کامل

perfect state transfer in unitary cayley graphs over local rings

in this work, using eigenvalues and eigenvectors of unitary cayley graphs over finite local rings and elementary linear algebra, we characterize which local rings allowing pst occurring in its unitary cayley graph. moreover, we have some developments when $r$ is a product of local rings.

متن کامل

Perfect state transfer in quantum spin networks.

We propose a class of qubit networks that admit the perfect state transfer of any quantum state in a fixed period of time. Unlike many other schemes for quantum computation and communication, these networks do not require qubit couplings to be switched on and off. When restricted to N-qubit spin networks of identical qubit couplings, we show that 2log3N is the maximal perfect communication dist...

متن کامل

Perfect state transfer in integral circulant graphs

The existence of perfect state transfer in quantum spin networks based on integral circulant graphs has been considered recently by Saxena, Severini and Shparlinski. We give the simple condition for characterizing integral circulant graphs allowing the perfect state transfer in terms of its eigenvalues. Using that we complete the proof of results stated by Saxena, Severini and Shparlinski. More...

متن کامل

When can perfect state transfer occur?

Let X be a graph on n vertices with adjacency matrix A and let H(t) denote the matrix-valued function exp(iAt). If u and v are distinct vertices in X, we say perfect state transfer from u to v occurs if there is a time τ such that |H(τ)u,v| = 1. The chief problem is to characterize the cases where perfect state transfer occurs. In this paper, it is shown that if perfect state transfer does occu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2015

ISSN: 0895-4801,1095-7146

DOI: 10.1137/140989510